Space elevator prospects have improved with the development by Cambridge scientists of a method for creating longer, less brittle carbon nanotubes by combining multiple nanotube strands:
Currently, the Cambridge team can make about 1 gram of the new carbon material per day, which can stretch to 18 miles in length. Alan Windle, professor of materials science at Cambridge, says that industrial-level production would be required to manufacture NASA’s request for 144,000 miles of nanotube. Nevertheless, the web-like nanotube material is promising.
“The key thing is that the process essentially makes carbon into smoke, but because the smoke particles are long thin nanotubes, they entangle and hold hands,” Windle said. “We are actually making elastic smoke, which we can then wind up into a fiber.”
Also worth checking out some of the alternatives to traditional space elevators that aren’t so demanding of tensile strength, like Keith Lofstrom’s launch loop, an electromagnetically “inflated” orbital launch system. [thanks to Bruce Cohen (SpeakerToManagers)]
It’ll be fun to see which of these designs actually gets off the ground: just as long as they don’t get off the ground then return unexpectedly.