RepRap creates circuits

Tom James @ 04-05-2009

just-finishedA moment of history. The RepRap project has created circuits for the first time:

Ed and I have a final-year student – Rhys Jones – who’s working on RepRap for his MEng research project. He’s been taking the old idea of depositing metal in channels and an observation of Forrest’s and Nophead’s (that you don’t need a low-melting-point alloy because the specific heat of metals is so low that they shouldn’t melt the plastic anyway).

Also worth a look: Bruce Sterling points to Darwinian Marxism as a means of ensuring the proletariat gain possession of the means of production sans revolution.

[via the Yorkshire Ranter][image from the Reprap blog]


Wicked Problems and ends to limitless [x]

Paul Raven @ 02-08-2011

That Steelweaver post on Reality As A Failed State I mentioned a few days back really did the rounds. So I’m going to link to Karl Schroeder at Charlie Stross’s blog once again, and without any sense of shame – he’s been quiet for ages, but he’s spooling out a year’s worth of good shizzle over the space of a few weeks at the moment, and I think he’s a voice worth paying attention to.

Here he is talking about the “metaproblems” that Steelweaver mentioned, which have not only been known and named (as “wicked problems” for some time, but are already a subject of intense study… which is a good thing, too.

It is not the case that wicked problems are simply problems that have been incompletely analyzed; there really is no ‘right’ formulation and no ‘right’ answer. These are problems that cannot be engineered. The anger of many of my acquaintances seems to stem from the erroneous perception that they could be solved this way, if only those damned republicans/democrats/liberals/conservatives/tree-huggers/industrialists/true believers/denialists didn’t keep muddying the waters. Because many people aren’t aware that there are wicked problems, they experience the failure to solve major complex world issues as the failure of some particular group to understand ‘the real situation.’ But they’re not going to do that, and granted that they won’t, the solutions you work on have to incorporate their points-of-view as well as your own, or they’re non-starters. This, of course, is mind-bogglingly difficult.

Our most important problems are wicked problems. Luckily, social scientists have been studying this sort of mess since, well, since 1970. Techniques exist that will allow moderately-sized groups with widely divergent agendas and points of view to work together to solve highly complex problems. (The U.S. Congress apparently doesn’t use them.) Structured Dialogic Design is one such methodology. Scaling SDD sessions to groups larger than 50 to 70 people at a time has proven difficult–but the fact that it and similar methods exist at all should give us hope.

Here are a few wicked problems I think are exemplary. I touched on one of them yesterday, in fact, namely the roboticisation curve in manufacturing; far from liberating the toiling masses in some utopian fusion of Marx and capitalism, it might well increase the polarisation and widen the gap between the poor masses and the super-rich elites, a process that Global Dashboard‘s Alex Evans refers to as “jobless growth”::

In some developed economies (and especially the US), research suggests that job opportunities are increasingly being polarised into high and low skill jobs, while middle class jobs are disappearing due to “automation of routine work and, to a smaller extent, the international integration of labour markets through trade and, more recently, offshoring”. Meanwhile, data also show that while more women are entering the global labour force, the ‘gender gap’ on income and quality of work is widening between women and men. These trends raise a number of critical uncertainties for employment and development to 2020.

If automation of routine work genuinely is a more significant factor in developed economy job polarization than international trade or offshoring, then the implication is that developing economies may increasingly also fall prey to job polarisation as new technologies emerge and become competitive with human labour between now and 2020. Chinese manufacturing and Indian service industry jobs could increasingly be replaced by technology, for example, and find their existing rates of inequality exacerbated still  further.

And here’s a serendipitous look at the economics of a world where replicators and 3d printing become cheap enough to be ubiquitous [via SlashDot]:

Prices for 3D printers are tumbling. Even simple systems often cost tens of thousands of dollars a decade ago. Now, 3D printers for hobbyists can be had for a fraction of that: MakerBot Industries offers a fully assembled Thing-O-Matic printer for just $2,500, and kits for building RepRap printers have sold for $500. The devices could be on track for mass-production as home appliances within just a few years.

So, will we all soon be living like Arabian Nights sultans with a 3D printing genie ready to grant our every wish? Could economies as we know them even survive in such a world, where the theoretically infinite supply of any good should drive its value toward zero?

The precise limitations of replicator technology will determine where scarcity and foundations for value will remain. 3D printers need processed materials as inputs. Those materials and all the labor required to mine, grow, synthesize or process them into existence will still be needed, along with the transportation costs to bring them to the printers. The energy to run a replicator might be another limiting factor, as would be time (would you spend three days replicating a toaster if you could have one delivered to your home in an hour)? Replicators will also need inputs to tell them how to make specific objects, so the programming and design efforts will still have value.

[…]

Perhaps the most important limitation on the replicator economy may competition from good old mass production. Custom-tailored suits may be objectively better than off-the-rack outfits, but people find that the latter are usually the more sensible, affordable purchase. Mass production—especially by factories adopting nimble 3D-printing technologies—can still provide marvelous economies of scale. So even when it is theoretically possible for anyone to fabricate anything, people might still choose to restrict their replicating to certain goods—and to continue making their tea with a store-bought teabag.

The unspoken underpinning of that last paragraph (as hinted by my bolding) is the important bit: the economies of scale of fabbing will see more and more human labour replaced by machines – machines that don’t need holidays, or even sleep; machines that don’t get tired and make a higher percentage of dud iterations as a result; machines that, before too long, will be able to make other machines as required. The attraction of such a system to Big Capital (and small capital, too) is pretty obvious.

And all in the name of chasing perpetual infinite growth, a central assumption of most modern economic thought (or at least the stuff I’ve encountered so far) that relies on a lot of other assumptions… like, say, the assumption that we’ll always be able to either produce more energy, or use the amount we have available more efficiently [via MetaFilter]:

It seems clear that we could, in principle, rely on efficiency alone to allow continued economic growth even given a no-growth raw energy future (as is inevitable). The idea is simple. Each year, efficiency improvements allow us to drive further, light more homes, manufacture more goods than the year before—all on a fixed energy income. Fortunately, market forces favor greater efficiency, so that we have enjoyed the fruits of a constant drum-beat toward higher efficiency over time. To the extent that we could continue this trick forever, we could maintain economic growth indefinitely, and all the institutions that are built around it: investment, loans, banks, etc.

But how many times can we pull a rabbit out of the efficiency hat? Barring perpetual motion machines (fantasy) and heat pumps (real; discussed below), we must always settle for an efficiency less than 100%. This puts a bound on how much gain we might expect to accomplish. For instance, if some device starts out at 50% efficiency, there is no way to squeeze more than a factor of two out of its performance.

[…]

Given that two-thirds of our energy resource is burned in heat engines, and that these cannot improve much more than a factor of two, more significant gains elsewhere are diminished in value. For instance, replacing the 10% of our energy budget spent on direct heat (e.g., in furnaces and hot water heaters) with heat pumps operating at their maximum theoretical efficiency effectively replaces a 10% expenditure with a 1% expenditure. A factor of ten sounds like a fantastic improvement, but the overall efficiency improvement in society is only 9%. Likewise with light bulb replacement: large gains in a small sector. We should still pursue these efficiency improvements with vigor, but we should not expect this gift to provide a form of unlimited growth.

On balance, the most we might expect to achieve is a factor of two net efficiency increase before theoretical limits and engineering realities clamp down. At the present 1% overall rate, this means we might expect to run out of gain this century.  Some might quibble about whether the factor of two is too pessimistic, and might prefer a factor of 3 or even 4 efficiency gain.  Such modifications may change the timescale of saturation, but not the ultimate result.

So it ain’t just Moore’s Law that could be running into a brick wall real soon. A whole lot of caltrops on the highway to the future, then… and we’re still arguing about how to bolt more governers and feedback loops onto fundamentally broken polticoeconomic systems. Wicked problems, indeed. It’s hard not to feel bleak as we look into the eye of this abyss, but Schroeder suggests there’s a way out:

Here’s my take on things: our biggest challenges are no longer technological. They are issues of communication, coordination, and cooperation. These are, for the most part, well-studied problems that are not wicked. The methodologies that solve them need to be scaled up from the small-group settings where they currently work well, and injected into the DNA of our society–or, at least, built into our default modes of using the internet. They then can be used to tackle the wicked problems.

What we need, in other words, is a Facebook for collaborative decision-making: an app built to compensate for the most egregious cognitive biases and behaviours that derail us when we get together to think in groups. Decision-support, stakeholder analysis, bias filtering, collaborative scratch-pads and, most importantly, mechanisms to extract commitments to action from those that use these tools. I have zero interest in yet another open-source copy of a commercial application, and zero interest in yet another Tetris game for Android. But a Wikipedia’s worth of work on this stuff could transform the world.

Digital direct democracy, in other words, with mechanisms built in to ameliorate the broken bits of our psychology. Oh, sure, you can scoff and say it’ll never work, but even a flimsy-looking boat starts looking like it’s worth a shot when the tired old paddle-steamer starts doing its Titanic impersonation in the middle of the swamp. What Schroeder (and many others) are suggesting is eminently possible; all we lack is the political will to build it.

And it’s increasingly plain that we’re not going to find that will in the bickering halls of the incumbent system; it’s only interested in maintaining its own existence for as long as possible, and damn the consequences.

Which is why we need to turn our backs on that system and build its replacement ourselves.


US and China to have manufacturing costs parity by 2015?

Paul Raven @ 09-05-2011

I’m going to offer this with a large pinch of salt, given that it’s a press release from a consulting firm, but the boldness of the claim is pretty impressive [via NextBigFuture]:

Within the next five years, the United States is expected to experience a manufacturing renaissance as the wage gap with China shrinks and certain U.S. states become some of the cheapest locations for manufacturing in the developed world, according to a new analysis by The Boston Consulting Group (BCG).

[…]

After adjustments are made to account for American workers’ relatively higher productivity, wage rates in Chinese cities such as Shanghai and Tianjin are expected to be about only 30 percent cheaper than rates in low-cost U.S. states. And since wage rates account for 20 to 30 percent of a product’s total cost, manufacturing in China will be only 10 to 15 percent cheaper than in the U.S.—even before inventory and shipping costs are considered. After those costs are factored in, the total cost advantage will drop to single digits or be erased entirely, Sirkin said.

Products that require less labor and are churned out in modest volumes, such as household appliances and construction equipment, are most likely to shift to U.S. production. Goods that are labor-intensive and produced in high volumes, such as textiles, apparel, and TVs, will likely continue to be made overseas.

Talk about a mixed bag of news. The prospect of working-class jobs returning to American shores must be something of a relief, but implicit in that return is the socioeconomic status of those “certain U.S. states” (and I think we can all guess which ones) as equivalent with China, the great economic enemy and exemplar of all things unAmerican. And it puts the lie to the notion of the unity of the US, too; sure, the top 1% of the country is rolling in money, but the bottom layer of the population pyramid is competing with China for the chance to make tchotchkes. Kinda puts the whole “USA! USA!” chanting from last week into perspective, doesn’t it? If this is a victory condition, I’d hate to be losing the game. (Note use of sarcasm as a way to blunt the pain; things over here on Airstrip One are looking grimmer by the day, too.)

Also implicit in the consultant’s outlook there is that the methodology of manufacture will remain essentially the same. Four years doesn’t look like a long time, but things move fast these days, and the 3D printing and fabbing industry is edging closer and closer to the point where it becomes a big grenade in the labour punchbowl. Still, I guess someone’s gonna have to make the 3d printers… up until the point where they can reliably self-replicate, anyway. (Shorter version: economics of mass production looking pretty screwed in the long term with respect to job creation. Profitability looking much better, but the 0.01% of the population who’ll benefit from it don’t need me to tell them that, I expect.)


Garage 3D printers working with ceramics, bioplastics

Paul Raven @ 17-02-2010

3D-printed clay vesselWatching the backyard fabrication and 3D printing scene is fascinating, not least because it’s developing so quickly – a mere pipedream just five years ago, but currently expanding its capabilities in leaps and bounds. One thing that will increase the versatility of these systems is a wider selection of materials with which to work… and while you can already print in sugar (with other foodstuffs remaining strictly hypothetical at this point), we’ve got people brewing up their own stove-top bioplastic blends [via BoingBoing] and tweaking their fabbers to work with clay [via Chairman Bruce; image clipped from linked article].

The former is promising because it gives hobby-level users the opportunity to work in cheap biodegradable plastics by using off-the-shelf ingredients that can be scored at the corner store (e.g. glycerin, vinegar); that recipe has a way to go before being usable, but you can bet your boots that other fab-fanatics will be working to refine it and sharing their results online… many eyes make bugs shallow, after all (though Microsoft’s Shawn Hernan would disagree). And being able to print in clay really opens up the arts & crafts market to the fabbers; consumer-level 3D design tools should lead to a minor renaissance in ceramics design.

I wonder if this will provide some counterbalance to the seemingly inevitable loss of jobs in the US due to the rise of robotic, computer-controlled and/or outsourced manufacturing? Short runs of custom designs (and those very simple products for which the current profit margins of Chinese made-for-export factories will not hold forever) would seem ideally suited to small local businesses based around a few fabbers, an oven or kiln and a finishing bench… and if someone can work out a way to scale down plastics recycling so it can be used to generate the necessary materials using locally-sourced waste, you’ve got a whole new economic sub-circuit operating at a local level.


The Product Bay – piracy goes 3D

Paul Raven @ 21-01-2010

Well, it was bound to happen – hell, Sven’s been writing columns that skirt around the idea for ages. Here’s the lowdown: 3D printing is maturing quickly, and 3D scanning isn’t far behind, meaning that material objects can be stored and transmitted as digital data. Digital data can be shared in many different ways, and – as the recording industry has learned the hard way – illicit filesharing is, for all intents and purposes, an unclosable Pandora’s box. So what’s to stop people trading, sharing and printing off copies of copyright-controlled objects – shoes, clothing, homeware, car parts, whatever?

The answer – nothing. Nothing at all. Welcome to The Product Bay:

RepRap and other 3D printers are the future. There’s no question about it. With the proud tradition from The Pirate Bay, we want to take all of this to the next level. TPB will be TPB, but for real life objects. For now, visit Thingiverse who already understands this.

We want you to download those new jeans.

We want you to share those new shoes.

It’s possible, let’s make it happen.

Granted, The Product Bay is just a one-page site with a provocative message, and I rather suspect it has been launched with the purpose of starting a conversation more than any real hope of kicking off the world’s first tracker site for digital files of real-world objects… but it’s also a harbinger of things to come, and the big-brand companies that aren’t scared by the idea should probably start planning for the worst. It’s not like there’s been no warning, after all. [via Fabbaloo]


Next Page »