Speaking of marine conservation…

Tom James @ 27-08-2009

garbage_in_ocean…as we were, here is news of the first incursion into the collossal garbage patch that has collected in the Pacific Ocean:

Scientists surveyed plastic distribution and abundance, taking samples for analysis in the lab and assessing the impacts of debris on marine life.

Before this research, little was known about the size of the “garbage patch” and the threats it poses to marine life and the gyre’s biological environment.

On August 11th, the researchers encountered a large net entwined with plastic and various marine organisms; they also recovered several plastic bottles covered with ocean animals, including large barnacles.

“Finding so much plastic there was shocking,” said Goldstein. “How could there be this much plastic floating in a random patch of ocean–a thousand miles from land?”

This reminds me of the great junk armada depicted in Snow Crash by Neal Stephenson.

[via Physorg][image from Physorg]


Polyanna

Sarah Ennals @ 19-07-2009

Polyanna - Does Not Equal

Does Not Equal is a webcomic by Sarah Ennalscheck out the pre-Futurismic archives, and the strips that have been published here previously.

[ Be sure to check out the Does Not Equal Cafepress store for webcomic merchandise featuring Canadians with geometrically-shaped heads! ]


Conducting bacteria that feed off garbage to produce power

Tomas Martin @ 06-08-2008

Is rubbish going to become too valuable to be piled up like this?Whilst some of first generation biofuels like corn and soy based ethanol are proving to be more trouble than their worth, scientists are working hard on second and third generation alternatives that should add to our energy mix without damaging our food supply. One new development is microbial fuel cells (MFCs) – bacteria that breaks down garbage and conducts electricity. Scientists think by digesting our waste these cells could replace up to 25% of the fuels we currently use.

In a microbial fuel cell, the bacteria acts on the anode of the circuit, breaking down waste with oxidation. As a byproduct they produce electrons. Normally a bacteria would transfer these electrons to a nearby oxygen molecule but if the fuel cell has no oxygen in it, the microbe must move these electrons elsewhere and an MFC uses this to drive an electrical current.

Researchers are beginning to make headway in creating self-contained microbial fuel cells. Biofilms are bacteria that create matrices of material to attach themselves to the anode. This mix of sugars, proteins and cells is thought to contain tiny conducting nanowires that help move the electrons into the electrical circuit, making the whole clump of bacteria act like a big living anode. If this works, people aren’t going to be leaving their litter on the streets any longer. It’ll be too valuable!

[via Daily Galaxy, picture by Alan Stanton]