What Watson did next

Paul Raven @ 24-02-2011

Impressed by Watson’s Jeopardy! victory? Found yourself with the urge to build your own (scaled down) supercomputer artificial intelligence in your basement using nothing but off-the-shelf hardware and open-source software? IBM’s very own Tony Pearson has got your back. [via MetaFilter; please bear in mind that not all basements will be eminently suited to a research project of this scale]

Meanwhile, fresh from whuppin’ on us slow-brained meatbags, Watson’s seeking new challenges in the world of medicine [via BigThink]:

The idea is for Watson to digest huge quantities of medical information and deliver useful real-time information to physicians, perhaps eventually in response to voice questions. If successful, the system could help medical experts diagnose conditions or create a treatment plan.

… while other health-care technology can work with huge pools of data, Watson is the first system capable of usefully harnessing the vast amounts of medical information that exists in the form of natural language text—medical papers, records, and notes. Nuance hopes to roll out the first commercial system based on Watson technology within two years, although it has not said how sophisticated this system will be.

Ah, good old IBM. My father used to work for them back in the seventies and early eighties, and it’s kind of amusing to see that their age-old engineering approach of building an epic tool before looking for a use to put it to hasn’t changed a bit…


Watson’s victory clear, but perhaps not as impressive as it seems

Paul Raven @ 17-02-2011

So, Watson won at Jeopardy!… by a pretty significant lead, too. Inevitably, lots of folk are keen to downplay this victory, and for a variety of reasons. Commonest complaint would have to be regarding Watson’s speed-to-buzzer advantage, but its minders designers say that it’s not really that big a deal:

Though Watson seemed to be running the round and beating Jennings and Rutter to the punch with its answers many times, Welty insisted that Watson had no particular advantage in terms of buzzer speed. Players can’t buzz in to give their questions until a light turns on after the answer is read, but Welty says that humans have the advantage of timing and rhythm.

“They’re not waiting for the light to come on,” Welty said; rather, the human players try to time their buzzer presses so that they’re coming in as close as possible to the light. Though Watson’s reaction times are faster than a human, Welty noted that Watson has to wait for the light. Dr. Adam Lally, another member of Watson’s team, noted that “Ken and Brad are really fast. They have to be.”

A re-run with some sort of handicap might prove this one way or the other, but I suspect the doubters will find new advantages to pin on the machine… which , to my mind, rather misses the point of the exercise, which was to demonstrate whether or not a machine could outperform humans at a particular task. Quod erat demonstrandum, y’know?

A more interesting point is that even Watson’s creators aren’t entirely sure how Watson achieves what it achieves. George Dvorsky:

Great quote from David Ferrucci, the Lead Researcher of IBM’s Watson Project:

“Watson absolutely surprises me. People say: ‘Why did it get that one wrong?’ I don’t know. ‘Why did it get that one right?’ I don’t know.”Essentially, the IBM team came up with a whole whack of fancy algorithms and shoved them into Watson. But they didn’t know how these formulas would work in concert with each other and result in emergent effects (i.e. computational cognitive complexity). The result is the seemingly intangible, and not always coherent, way in which Watson gets questions right—and the ways in which it gets questions wrong.

As Watson has revealed, when it errs it errs really badly.

This kind of freaks me out a little. When asking computers questions that we don’t know the answers to, we aren’t going to know beyond a shadow of a doubt when a system like Watson is right or wrong. Because we don’t know the answer ourselves, and because we don’t necessarily know how the computer got the answer, we are going to have to take a tremendous leap of faith that it got it right when the answer seems even remotely plausible.

Dvorsky’s underlying point here is that we shouldn’t be too cocky about our ability to ensure artificial intelligences think in the ways we want them to. They’re just as inscrutable as another human mind. Perhaps even more so… which is why he and Anders Sandberg (among others) believe we should foster a healthy fear of powerful AI systems.

But the most interesting point I’ve seen made about Watson’s victory is a skeptical stance over at Memesteading:

When Alex Trebek walked by the 10 racks of 9 servers each, said to include 2880 computing cores and 15 terabytes (15,000 gigabytes) of high-speed RAM main-memory, I couldn’t shake the feeling: this seems like too much hardware… at least if any of the software includes new breakthroughs of actual understanding. As parts of the show took on the character of an IBM infomercial, the feeling only grew.

[…]

An offline copy of all of Wikipedia’s articles, as of the last full data-dump, is about 6.5GB compressed, 30GB uncompressed – that’s 1/500th Watson’s RAM. Furthermore, chopping this data up for rapid access – such as creating an inverted index, and replacing named/linked entities with ordinal numbers – tends to result in even smaller representations. So with fast lookup and a modicum of understanding, one server, with 64GB of RAM, could be more than enough to contain everything a language-savvy agent would need to dominate at Jeopardy.

But what if you’re not language savvy, and only have brute-force text-lookup? We can simulate the kinds of answers even a naive text-search approach against a Wikipedia snapshot might produce, by performing site-specific queries on Google.

For many of the questions Watson got right, a naive Google query of the ‘en.wikipedia.org’ domain, using the key words in the clue, will return as the first result the exact Wikipedia article whose title is the correct answer.

[…]

With a full, inverse-indexed, cross-linked, de-duplicated version of Wikipedia all in RAM, even a single server, with a few cores, can run hundreds of iteratively-refined probe queries, and scan the full-text of articles for sentences that correlate with the clue, in the seconds it takes Trebek to read the clue.

That makes me think that if you gave a leaner, younger, hungrier team millions of dollars and years to mine the entire history of Jeopardy answers-and-questions for workable heuristics, they could match Watson’s performance with a tiny fraction of Watson’s hardware.

All of which isn’t to demean Watson’s achievement so much as to suggest that perhaps the same results could be reached with a much smaller hardware outlay… though there is an undercurrent of “Big Iron infomercial” in there, too.


Watson’s Jeopardy warm-up went well

Paul Raven @ 14-01-2011

Remember me mentioning IBM’s Watson, the artificial intelligence system trained to play – and kick meatperson arse – at Jeopardy? Watson’s big showdown with the top-rated Jeopardy players is scheduled for next month, but a practice run for a press conference yesterday saw Big Blue’s big box beat the humans by a reasonable lead. I wonder what the bookies’ odds are on a complete victory?

Reports that Watson, at this crucial breakthrough juncture in its career, has been invited to appear in this summer’s run of Oh My God I’m a Marginal Celebrity Survivor With Talent On Ice In the Jungle Get Me An Agent are said to be unfounded, and were in fact made up by me a few seconds ago.


How can a computer win at Jeopardy? Elementary, my dear Watson

Paul Raven @ 17-06-2010

This is not only an interesting story, but an engaging piece of journalism, and I heartily recommend you go read it: it’s an NYT magazine piece about Watson, an IBM artificial intelligence project headed by one David Ferucci that does something that artificial intelligences have heretofore been unable to do: beat human players at Jeopardy! [found in a tweet by @noahtron, which was retweeted by someone I follow who, regrettably, has slipped both my memory and my notetaking process – apologies for incomplete attribution]

I’ll pick out a few highlights for the short-on-time, but bookmark it for reading later anyway. We’ll start off with the methodology:

The great shift in artificial intelligence began in the last 10 years, when computer scientists began using statistics to analyze huge piles of documents, like books and news stories. They wrote algorithms that could take any subject and automatically learn what types of words are, statistically speaking, most (and least) associated with it. Using this method, you could put hundreds of articles and books and movie reviews discussing Sherlock Holmes into the computer, and it would calculate that the words “deerstalker hat” and “Professor Moriarty” and “opium” are frequently correlated with one another, but not with, say, the Super Bowl. So at that point you could present the computer with a question that didn’t mention Sherlock Holmes by name, but if the machine detected certain associated words, it could conclude that Holmes was the probable subject — and it could also identify hundreds of other concepts and words that weren’t present but that were likely to be related to Holmes, like “Baker Street” and “chemistry.”

In theory, this sort of statistical computation has been possible for decades, but it was impractical. Computers weren’t fast enough, memory wasn’t expansive enough and in any case there was no easy way to put millions of documents into a computer.

Those are no longer obstacles, of course, or at least not obstacles on the same scale. So, add multiple parallel algorithms, shake vigorously, and…

Watson’s speed allows it to try thousands of ways of simultaneously tackling a “Jeopardy!” clue. Most question-answering systems rely on a handful of algorithms, but Ferrucci decided this was why those systems do not work very well: no single algorithm can simulate the human ability to parse language and facts. Instead, Watson uses more than a hundred algorithms at the same time to analyze a question in different ways, generating hundreds of possible solutions. Another set of algorithms ranks these answers according to plausibility; for example, if dozens of algorithms working in different directions all arrive at the same answer, it’s more likely to be the right one. In essence, Watson thinks in probabilities. It produces not one single “right” answer, but an enormous number of possibilities, then ranks them by assessing how likely each one is to answer the question.

The result? Watson actually competes pretty well against players in the “winner cloud” of Jeopardy! performance, though it’s by no means cock of the rock. Not yet, anyway.

What made the article itself so enjoyable for me was the human story behind it – Ferucci comes across as a real Driven Man, striving to come first in a fiercely competitive and high-stakes scientific race:

Ferrucci refused to talk on the record about Watson’s blind spots. He’s aware of them; indeed, his team does “error analysis” after each game, tracing how and why Watson messed up. But he is terrified that if competitors knew what types of questions Watson was bad at, they could prepare by boning up in specific areas. I.B.M. required all its sparring-match contestants to sign nondisclosure agreements prohibiting them from discussing their own observations on what, precisely, Watson was good and bad at. I signed no such agreement, so I was free to describe what I saw; but Ferrucci wasn’t about to make it easier for me by cataloguing Watson’s vulnerabilities.

As with most AI projects, however, Watson only does one thing, though it (he?) does it pretty well. It’s a function with potential commercial uses (which is why IBM is still throwing money at Ferucci and team), but a general artificial intelligence needs to be able to do more than win at a certain quizshow format. The difficulties of producing a natural-language question-answering intelligence on a par with human learning were pretty neatly showcased by Wolfram|Alpha last year (which, despite being disappointing to the public, is a pretty impressive piece of work in its own right):

This, Wolfram says, is the deep challenge of artificial intelligence: a lot of human knowledge isn’t represented in words alone, and a computer won’t learn that stuff just by encoding English language texts, as Watson does. The only way to program a computer to do this type of mathematical reasoning might be to do precisely what Ferrucci doesn’t want to do — sit down and slowly teach it about the world, one fact at a time. […] Watson can answer only questions asking for an objectively knowable fact. It cannot produce an answer that requires judgment. It cannot offer a new, unique answer to questions like “What’s the best high-tech company to invest in?” or “When will there be peace in the Middle East?” All it will do is look for source material in its database that appears to have addressed those issues and then collate and compose a string of text that seems to be a statistically likely answer. Neither Watson nor Wolfram Alpha, in other words, comes close to replicating human wisdom.

So don’t go announcing the Singularity just yet, eh? Even so, it’s a pretty big leap that Ferucci and friends have made, and the practical applications should hopefully pay the way for more research. Weird times ahead… though Ferucci’s suggestion that Watson could replace call centre drones has a certain appeal.