Tag Archives: medicine

Pimp my prosthesis

For my money, a sure mark of a technology reaching maturity (and market acceptance) is when the purely aesthetic customisation options start to appear

bespoke prosthetic leg

Bonus future-points for the fact that these are being made using rapid prototyping / 3d printing technology. Mass production, pah!

[ Can’t actually remember whose Google Reader recommendations this piece came out of, so – whoever it was – please accept my apologies and an ambiguously-directed hat-tip. ]

Schizophrenia: caused by retroviruses?

I remember blogging the toxoplasma-causes-schizophrenia speculation right here back in 2006, and it’s been a hardy perennial on the weird’n’wonderful blog circuit ever since… but as science-fictional as it sounds – pure Invasion-of-the-Bodysnatchers stuff, albeit without the Communist subtext – an increasing number of psychiatrists are starting to conclude that schizophrenia isn’t caused by distant parenting or dodgy genes, but by a virus that we all carry within ourselves [via TechnOcculT]. Just one of many, in fact:

Viruses like influenza or measles kill cells when they infect them. But when retroviruses like HIV infect a cell, they often let the cell live and splice their genes into its DNA. When the cell divides, both of its progeny carry the retrovirus’s genetic code in their DNA.

In the past few years, geneticists have pieced together an account of how Perron’s retrovirus entered our DNA. Sixty million years ago, a lemurlike animal—an early ancestor of humans and monkeys—contracted an infection. It may not have made the lemur ill, but the retrovirus spread into the animal’s testes (or perhaps its ovaries), and once there, it struck the jackpot: It slipped inside one of the rare germ line cells that produce sperm and eggs. When the lemur reproduced, that retrovirus rode into the next generation aboard the lucky sperm and then moved on from generation to generation, nestled in the DNA. “It’s a rare, random event,” says Robert Belshaw, an evolutionary biologist at the University of Oxford in England. “Over the last 100 million years, there have been only maybe 50 times when a retrovirus has gotten into our genome and proliferated.”

But such genetic intrusions stick around a very long time, so humans are chockablock full of these embedded, or endogenous, retroviruses. Our DNA carries dozens of copies of Perron’s virus, now called human endogenous retrovirus W, or HERV-W, at specific addresses on chromosomes 6 and 7.

If our DNA were an airplane carry-on bag (and essentially it is), it would be bursting at the seams. We lug around 100,000 retro­virus sequences inside us; all told, genetic parasites related to viruses account for more than 40 percent of all human DNA. Our body works hard to silence its viral stowaways by tying up those stretches of DNA in tight stacks of proteins, but sometimes they slip out. Now and then endogenous retroviruses switch on and start manufacturing proteins. They assemble themselves like Lego blocks into bulbous retroviral particles, which ooze from the cells producing them.

[…]

Through this research, a rough account is emerging of how HERV-W could trigger diseases like schizophrenia, bipolar disorder, and MS. Although the body works hard to keep its ERVs under tight control, infections around the time of birth destabilize this tense standoff. Scribbled onto the marker board in Yolken’s office is a list of infections that are now known to awaken HERV-W—including herpes, toxoplasma, cytomegalovirus, and a dozen others. The HERV-W viruses that pour into the newborn’s blood and brain fluid during these infections contain proteins that may enrage the infant immune system. White blood cells vomit forth inflammatory molecules called cytokines, attracting more immune cells like riot police to a prison break. The scene turns toxic.

In one experiment, Perron isolated HERV-W virus from people with MS and injected it into mice. The mice became clumsy, then paralyzed, then died of brain hemorrhages. But if Perron depleted the mice of immune cells known as T cells, the animals survived their encounter with HERV-W. It was an extreme experiment, but to Perron it made an important point. Whether people develop MS or schizophrenia may depend on how their immune system responds to HERV-W, he says. In MS the immune system directly attacks and kills brain cells, causing paralysis. In schizophrenia it may be that inflammation damages neurons indirectly by overstimulating them. “The neuron is discharging neurotransmitters, being excited by these inflammatory signals,” Perron says. “This is when you develop hallucinations, delusions, paranoia, and hyper-suicidal tendencies.”

If they’re right, then medicine may be close to discovering a way to head schizophrenia off at the metaphorical pass; having seen first-hand the sudden (and often terrifying) way in which those maladies can destroy the lives of their sufferers (and those close to them), I sincerely hope they are.

All the roads that’s fit to print

Gasp in awe at the crazy range of stuff we can ‘print’ nowadays… and then try not to think too hard about the economic job-destruction implications as you watch video footage (which, given it was linked to by BLDGBLOG, I’m assuming isn’t some sort of clever spoof) of a machine that can ‘print’ a paved Tiger Stone road as easily as laying a long roll of linoleum:

Geoff Manaugh’s post linked above already mentions China Mieville’s Iron Council as a fictional almost-precedent, but it’s such a powerful conceptual image that I think you could get more stories out of it without treading on anyone’s toes…

Stuff-we-can-(theoretically)-print bonus content: we’ve mentioned transplant organ printing before, but here’s an explanatory video from the Biophysics Lab of the University of Missouri-Columbia [via Fabbaloo]:

Malaria mosquitoes evolving immunity faster than expected

More malaria news, some bad, some good. The bad news: two strains of African malaria-carrying mosquito are evolving more quickly than was previously thought, which could render them immune to current and future control strategies.

The good (or at least better) news: around a third of the molecular switches that control key stages of the development of the malaria parasite can be tampered with in order to prevent transmission of the disease.

Sad to think that The War On Malaria struggles for funding, while The Wars On An Assortment Of Abstract Nouns burn billions to little effect. Cognitive bias at its very best.

Body Area Networks: medical monitoring on the move

The Body Area Network shouldn’t be an entirely new idea to regular readers, but for those of you new to the term, it does what it says on the tin, i.e. networks together an assortment of gadgets and devices located on or in the human body. Those devices can be pretty much anything that produces or processes a signal… so as well as the potential for augmenting yourself into a Stephensonian gargoyle, you can also turn the electronic eye inwards by rigging up systems to monitor your internal organs and send the data to your phone:

Dubbed the Human++ BAN platform, the system converts IMEC’s ultra-low-power electrocardiogram sensors into wireless nodes in a short-range network, transmitting physiological data to a hub – the patient’s cellphone. From there, the readings can be forwarded to doctors via a Wi-Fi or 3G connection. They can also be displayed on the phone or sound an alarm when things are about to go wrong, giving patients like me a chance to try to slow our heart rates and avoid an unnecessary shock.  To learn more about medical software programs view this site.

Julien Penders, who developed the system, says it can also work with other low-power medical sensors, such as electroencephalograms (EEGs) to monitor neurological conditions or electromyograms to detect neuromuscular diseases. Besides helping those already diagnosed with chronic conditions, BANs could be used by people at risk of developing medical problems – the so-called “worried well” – or by fitness enthusiasts and athletes who want to keep tabs on their physiological processes during training by using the best testosterone booster.

Lots of street uses, too, once this stuff gets cheap (which shouldn’t take long). For instance, we humans tend to get competitive about pretty much anything that can be measured and recorded, so perhaps we’ll get forums devoted to people pushing their bodies to extremes – be it through drug use, extreme sports or even epic-scale lassitude – and posting the evidence. Whole lot of new (and weird) categories for the Guinness Book of Records coming down the pipeline…